
Static Profiling: Why should you try it?

Angélica Moreira

Women in Compilers and Tools Meetup Series
30 June 2022

- From Belo Horizonte, MG - Brazil*

- Pursuing a PhD in Computer Science at Federal University of Minas Gerais (UFMG) in
Brazil
◦ Advised by dr. Fernando Magno Quintão Pereira (from UFMG)
◦ Co-advised by dr. Guilherme Ottoni (from Meta)

- Working in compilers research area as a Graduate Student Researcher for almost 4 years
(mostly LLVM)
◦ Projects highlight:

• Dead Code Elimination
• Basic Block Reordering
• Static Branch Predictor
• MLIR-based Compiler for the MSCCL** project

2

* Yep, the city where Brazil was humiliated by Germany in the world cup, 7x1 :’(
** MSCCL stands for Microsoft Collective Communication Library (MSCCL) is a platform to execute custom collective communication algorithms for multiple
accelerators supported by Microsoft Azure. https://github.com/microsoft/msccl

Who am I?

https://github.com/microsoft/msccl

3

Prediction vs. Probability vs. Frequency

Basic Concepts

Prediction vs. Probability vs. Frequency

4

• For instance, in this code:

– A branch prediction :

• "branch b1->b2 will be taken."

b1: if (condition)
b2: statement;
b3: else statement;

[1] Youfeng Wu and J. R. Larus, "Static branch frequency and program profile analysis," Proceedings of MICRO-27. The 27th Annual
IEEE/ACM International Symposium on Microarchitecture, San Jose, CA, USA, 1994, pp. 1-11, doi: 10.1109/MICRO.1994.717399.

[1]

https://dl.acm.org/doi/10.1145/192724.192725

5

• For instance, in this code:

– A branch probability :

• "branch b1->b2 81% to be taken, while b1->b3 has

19% of being taken."

b1: if (condition)
b2: statement;
b3: else statement;

[1]

Prediction vs. Probability vs. Frequency

[1] Youfeng Wu and J. R. Larus, "Static branch frequency and program profile analysis," Proceedings of MICRO-27. The 27th Annual
IEEE/ACM International Symposium on Microarchitecture, San Jose, CA, USA, 1994, pp. 1-11, doi: 10.1109/MICRO.1994.717399.

https://dl.acm.org/doi/10.1145/192724.192725

6

• For instance, in this code:

– A branch frequency :

• "b1 executes 80 times, in 65 of which it branches

to b2, and in 15 it branches to b3."

b1: if (condition)
b2: statement;
b3: else statement;

[1]

Prediction vs. Probability vs. Frequency

[1] Youfeng Wu and J. R. Larus, "Static branch frequency and program profile analysis," Proceedings of MICRO-27. The 27th Annual
IEEE/ACM International Symposium on Microarchitecture, San Jose, CA, USA, 1994, pp. 1-11, doi: 10.1109/MICRO.1994.717399.

https://dl.acm.org/doi/10.1145/192724.192725

7

Software-Based Branch Prediction

Software-Based Branch Prediction

8

entry

scanf(&x)

if (x <= 100)

printf("Cat person.") printf("Dog person.")

9

entry

scanf(&x)

if (x <= 100)

printf("Cat person.") printf("Dog person.")

Which way are we more
likely to go?

Software-Based Branch Prediction

10

entry

scanf(&x)

if (x <= 100)

printf("Cat person.") printf("Dog person.")

20%? 80%?

Software-Based Branch Prediction

11

entry

scanf(&x)

if (x <= 100)

printf("Cat person.") printf("Dog person.")

How it's usually done...

Software-Based Branch Prediction

Dynamic Profiling

12

entry

scanf(&x)

if (x <= 100)

printf("Dog person.") printf("Cat person")

Inputs

10010 50 200

3 1

13

entry

scanf(&x)

if (x <= 100)

printf("Dog person.") printf("Cat person.)

75% 25%

Dynamic Profiling

14

entry

scanf(&x)

if (x > 100)

printf("Dog person.") printf("Cat person.)

75% 25%

What are the common

techniques?

Dynamic Profiling

15

• Sampling-based approaches:

– Runs the program

– Samples instructions executed

– Records sampled branch executions

Dynamic Profiling

16

• Sampling-based approaches:

– Runs the program

– Samples instructions executed

– Records sampled branch executions

Dynamic Profiling

17

• Instrumentation based approaches:

– Instrument every branch in the program with a

counter

– Increment counter whenever branch executes

– Much higher CPU and memory overhead

– Intrusive

Dynamic Profiling

18

Motivation

Speaking of
intrusiveness...

19

Motivation

But why static branch
prediction?

20

Motivation

Collecting profile data
sometimes is really

difficult …

But why static branch
prediction?

21

Motivation

Collecting profile data
sometimes is really

difficult …
But why static branch

prediction?
Impossible?

22

Motivation

Collecting profile data
sometimes is really

difficult …
But why static branch

prediction? Yes, think about mobile
apps.Impossible?

Static Profiling

23

• Look only at the code

Static Profiling

24

• Look only at the code (no execution!)

25

• Look only at the code (no execution!)

Static Profiling

26

• Look only at the code (no execution!)

• Try to infer branch likelihood

Static Profiling

Static Branch Prediction in the Wild

27

• Heuristic-based

• Machine Learning-based

Suggestion of paper to read:
Wenlei He, Julián Mestre, Sergey Pupyrev, Lei Wang, and Hongtao Yu. 2022. Profile inference revisited. Proc. ACM Program.
Lang. 6, POPL, Article 52 (January 2022), 24 pages. https://doi.org/10.1145/3498714

https://dl.acm.org/doi/10.1145/3498714

Heuristic-Based Static Profiling

28

entry

if (p == nullptr)

printf("Error!")
exit() printf("Wash your hands")

Heuristic-Based Static Profiling

29

entry

if (p == nullptr)

printf("Error!")
exit() printf("Wash your hands")

Error path is
probably more

likely to not
execute often?

(heuristics)

Heuristic-Based Static Profiling

30

if (p == nullptr)

printf("Error!")
exit()

So we might
guess these!

printf("Wash your hands")

entry

HOT!
Cold

LLVM's Static Branch Prediction

31

• Based solely on heuristics

– Paper from Ball & Larus1

• Implemented in the BranchProbabilityInfo analysis pass

[1] Ball, Thomas, and James R. Larus. "Branch prediction for free." ACM SIGPLAN Notices 28.6 (1993): 300-313.

https://llvm.org/doxygen/BranchProbabilityInfo_8cpp_source.html
https://dl.acm.org/doi/10.1145/173262.155119

Heuristic-Based Static Profiling

32

• Very ad-hoc solution

• Relies on compiler developers themselves coming up

with clever heuristics

Machine Learning-Based Static Profiling

33

• Collect corpus of programs, and static features that

describe them

• Record their branch execution behaviour

• Train ML model based on features + branch data

• Create static profiles for unknown programs based on

trained knowledge!

Some work in this area

34

To read click here

To read click here

To read click here

https://arxiv.org/abs/2112.14679#:~:text=Profile%20Guided%20Optimization%20without%20Profiles%3A%20A%20Machine%20Learning%20Approach,-Nadav%20Rotem%2C%20Chris&text=Profile%20guided%20optimization%20is%20an,regular%20updating%20to%20remain%20fresh.
https://dl.acm.org/doi/abs/10.1145/3485521
https://dl.acm.org/doi/10.1145/239912.239923

35

• Optimize binaries using static profile inferred by a
machine learning model

• Vintage ESP Amended (VESPA)
– Extension of Calder's work: Evidence-Based Static

Branch Prediction (ESP)

[1] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. 1997.
Evidence-based static branch prediction using machine learning. ACM Trans. Program. Lang. Syst. 19, 1 (Jan. 1997), 188–222.
DOI:https://doi.org/10.1145/239912.239923

[1]

The goal of this Work

https://dl.acm.org/doi/10.1145/239912.239923

Calder vs VESPA

36

• Collect corpus of programs, and static features that

describe them

• Record their branch execution behaviour

• Train ML model based on features + branch data

• Create static profiles for unknown programs based on

trained knowledge!

Infrastructure overview - Static BOLT usage!

37

Extract static
features from binary

Feed features to ML
model, extract
probabilities

Optimize binary with inferred
probabilities

Optimize binary
Run binary with

perf, collect
counters

Convert the perf
report to bolt
input format

ML Pipeline Overview

38

Statically extract 56
features for each

branch in the program

Data Preparation

Encoding categorical
features

Scaling numeric
features

Cleaning

Train predictive
models / Perform
predictions using

the model

ML Model

Features

NumericalCategorical

ML Pipeline Overview

39

Statically extract 56
features for each

branch in the program

Data Preparation

Encoding categorical
features

Scaling numeric
features

Cleaning

Train predictive
models / Perform
predictions using

the model

ML Model

How?
Features

NumericalCategorical

Feature Miner

40

• Implemented the FeatureMiner pass in BOLT

• Runs after binary disassembling/CFG construction

• Analyzes the CFG to collect static features proposed by

Calder et al.[1], as well as others devised by us for each

branch.

[1] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. 1997.
Evidence-based static branch prediction using machine learning. ACM Trans. Program. Lang. Syst. 19, 1 (Jan. 1997), 188–222.
DOI:https://doi.org/10.1145/239912.239923

https://dl.acm.org/doi/10.1145/239912.239923

41

Statically extract 56
features for each

branch in the program

Data Preparation

Encoding categorical
features

Scaling numeric
features

Cleaning

Train predictive
models / Perform
predictions using

the model

ML Model

Which features?

ML Pipeline Overview

Features

NumericalCategorical

42

isLoopHeader

An Example

43

isLoopHeader

This conditional branch is the
header of this loop. Thus,

isLoopHeader = True

An Example

44

isLoopHeader

This conditional branch is not
the header of any loop. Thus,

isLoopHeader = False

An Example

45

An Example
isLoopHeader

And 55 more others!

ML Model

46

Statically extract 56
features for each

branch in the program

Data Preparation

Encoding categorical
features

Scaling numeric
features

Cleaning

Train predictive
models / Perform

predictions using the
model

What do these
predictions look like?

ML Pipeline Overview

Features

NumericalCategorical

Prediction Output

47

entry

scanf(&x)

if (x > 100)

printf("Do not get
vaccinated for COVID")

printf("Get vaccinated for
COVID")

4%? 96%?

Our models provide estimates for
the probabilities of branches

being taken/not taken

48

entry

scanf(&x)

if (x > 100)

printf("Do not get
vaccinated for COVID")

printf("Get vaccinated for
COVID")

400? 9600?

However, BOLT assigns
frequencies to branches, not

probabilities.

Prediction Output

49

entry

scanf(&x)

if (x > 100)

printf("Do not get
vaccinated for COVID")

printf("Get vaccinated for
COVID")

400? 9600?

However, BOLT assigns
frequencies to branches, not

probabilities.

Prediction Output

Our model outputs
probabilities, yet we need

frequencies. How to
convert between the two?

Getting Frequencies out of Probabilities

50

• Technique proposed by Wu & Larus1

• Calculate basic block and Control Flow Graph (CFG) edge frequencies

intra-procedurally (within functions)

• Propagate probabilities starting from the entry block, according to these equations:

(if entry block)

(otherwise)

[1] Wu, Youfeng, and James R. Larus. "Static branch frequency and program profile analysis." Proceedings of the
27th annual international symposium on Microarchitecture. 1994.

https://dl.acm.org/doi/10.1145/192724.192725

Getting Frequencies out of Probabilities

51

• Technique proposed by Wu & Larus1

• Calculate basic block and Control Flow Graph (CFG) edge frequencies

intra-procedurally (within functions)

• Propagate probabilities starting from the entry block, according to these equations:

(if entry block)

(otherwise)

[1] Wu, Youfeng, and James R. Larus. "Static branch frequency and program profile analysis." Proceedings of the
27th annual international symposium on Microarchitecture. 1994.

This technique
estimates execution

frequency (not
absolute counts) with

static program
analysis!!!!

Caveats to Static Inference

52

• Indirect branches cannot have their targets inferred
statically
– Adds imprecision to intra-procedural inference!

• Similarly, indirect procedure calls (virtual method
invocations, function pointer calls, etc.) also cannot be
resolved statically
– Adds imprecision to inter-procedural inference!

Experiments

53

Hypothesis

"BOLT using static profile data can still provide some of
the gains as using real profile data."

54

Setup

55

● Trained models on a dataset with 243 programs:
○ Corpus of 2,093,873 two-way conditional

branched but only 513,316 associated with branch
predictions

● All binaries used in training and as baseline were
compiled using Clang 12 with -O3

● 80% of the branches used for training and 20% for
test and validation

VESPA in Practice

56

RQ2: What are the performance gains of our approach
when compared to the baseline compiler at its highest

optimization level, and to a binary optimized with
dynamic profiling information?

57

Experiments

Our baseline is the
original binary,

optimized with -O3

58

Experiments

BOLT+Full Perf indicates a
binary optimized using BOLT’s

traditional usage: with a
dynamic execution profile

collected with perf

59

Experiments

BOLT+Limited Perf indicates a
binary optimized using BOLT’s

traditional usage: with a stripped
dynamic execution profile

collected with perf.

60

Experiments

BOLT+Calder indicates a binary
built using BOLT with a static

profile inferred using the
heuristics due to Calder.

61

Experiments

BOLT+Wu Larus indicates a
binary built using BOLT with a
static profile inferred using the

heuristics due to Wu et al.

62

Experiments

BOLT+Unbiased indicates a
binary built using BOLT and

assuming every two-way branch
has a 50/50 probability split.

63

Experiments

BOLT+No Profile is a binary
built with BOLT fed with no

profile information at all.

64

Experiments

These two indicate binaries built
with trivial profiles that assume

every two-way branch takes
either direction with 100%

probability.

65

Experiments

And finally, BOLT+VESPA is a
binary built using BOLT with our

technique for static profile
inference.

66

Experiments

Sanity check

Far from the dynamic
results, but good

performance
improvements on top of

-O3
VESPA features
set beats ESP

feature set!

67

Experiments

Same behaviour occurs,
where VESPA provides

significant benefits on top of
baseline and BOLT with
trivial/heuristics-based

profiles

68

VESPA is still far away from
a dynamic profiler but it

does deliver considerable
speedups on top of the

baseline.

ESP feature set is
defeated by

VESPA feature
set!

Sanity check

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSIDADE FEDERAL DE MINAS GERAIS

FEDERAL UNIVERSITY OF MINAS GERAIS, BRAZIL

69

angelica.moreira@dcc.ufmg.br

What did you learn today?

● Ways to do software branch
prediction;

● Types of static branch
predictors;

● How we could do static
profiling;

● How we can use ML as a tool
to help in the task of
generating static profile;

● How we can get branch and
block frequencies when you
only have probabilities.

Thanks to my sponsors:

