; 3 DCC
é{ﬁi 0) pilers DEPARTAMENTO DE

aboratory CIENCIA DA COMPUTAGAO

Static Profiling: Why should you try it?

Women in Compilers and Tools Meetup Series
30 June 2022

WHO AM [

- From Belo Horizonte, MG - Brazil*

- Pursuing a PhD in Computer Science at Federal University of Minas Gerais (UFMG) in
Brazil

> Advised by dr. Fernando Magno Quintdo Pereira (from UFMG)
o Co-advised by dr. Guilherme Ottoni (from Meta)

Working in compilers research area as a Graduate Student Researcher for almost 4 years
(mostly LLVM)

> Projects highlight:
* Dead Code Elimination
« Basic Block Reordering
« Static Branch Predictor
* MLIR-based Compiler for the MSCCL** project

* Yep, the city where Brazil was humiliated by Germany in the world cup, 7x1 :'(
** MSCCL stands for Microsoft Collective Communication Library (MSCCL) is a platform to execute custom collective communication algorithms for multiple
accelerators supported by Microsoft Azure. https://github.com/microsoft/msccl

https://github.com/microsoft/msccl

BASTC LONCEPTS

Prediction vs. Probability vs. Frequency

PREDLCTION VS PROBABLLITY VS, FREQUENCY

- For instance, in this code:

[1]
bl: if (condition)
b2: statement;
b3: else statement;

— A branch prediction :
- "branch b1->b2 will be taken."

[1] Youfeng Wu and J. R. Larus, "Static branch frequency and program profile analysis," Proceedings of MICRO-27. The 27th Annual 4
IEEE/ACM International Symposium on Microarchitecture, San Jose, CA, USA, 1994, pp. 1-11, doi: 10.1109/MICR0O.1994.717399.

https://dl.acm.org/doi/10.1145/192724.192725

PREDLCTION VS PROBABLLITY VS, FREQUENCY

- For instance, in this code:

[1]
bl: if (condition)
b2: statement;
b3: else statement;

- A branch probability
- "branch b1->b2 81% to be taken, while b1->b3 has
19% of being taken."

[1] Youfeng Wu and J. R. Larus, "Static branch frequency and program profile analysis," Proceedings of MICRO-27. The 27th Annual
IEEE/ACM International Symposium on Microarchitecture, San Jose, CA, USA, 1994, pp. 1-11, doi: 10.1109/MICR0O.1994.717399.

https://dl.acm.org/doi/10.1145/192724.192725

PREDLCTION VS PROBABLLITY VS, FREQUENCY

- For instance, in this code:

[1]
bl: if (condition)
b2: statement;
b3: else statement;

— A branch frequency
- "b1 executes 80 times, in 65 of which it branches
to b2, and in 15 it branches to b3."

[1] Youfeng Wu and J. R. Larus, "Static branch frequency and program profile analysis," Proceedings of MICRO-27. The 27th Annual
IEEE/ACM International Symposium on Microarchitecture, San Jose, CA, USA, 1994, pp. 1-11, doi: 10.1109/MICR0O.1994.717399.

https://dl.acm.org/doi/10.1145/192724.192725

SOFTWARE-BASED BRANCH PREDICTION

SOFTWARE-BASED BRANCH PREDICTION

SOFTWARE-BASED BRANCH PREDICTION

é v- /\ D

printf("Cat person.") printf("Dog person.")

SOFTWARE-BASED BRANCH PREDICTION

SOFTWARE-BASED BRANCH PREDICTION

entry

11

Inputs

DYNAMICPROFLLING

12

DYNAMICPROFLLING

13

/ / scanf(&

DYNAMICPROFLLING

entry

S

7

\ Y

14

DYNAMIC PROFILING

- Sampling-based approaches:

— Runs the program
- Samples instructions executed

— Records sampled branch executions

DYNAMIC PROFILING

- Sampling-based approaches:
— Runs the program
- Samples instructions executed

— Records sampled branch executions

Samples: 1K of event 'cycles:u', Event count (approx.): 672732155
Overhead Samples Command Shared Object Symbol
242 Puzzle Puzzle .] 0x00000000000005cT
+ 18.51% 0x4005b6
+ 4.96% 0x4005ef
73 Puzzle Puzzle [.] 0x00000000000005c8
.65% 0x4005b6

.59% 0x4005ef (predicted:83.3%)
72 Puzzle Puzzle [.] 0x00000000000005ef

.62% 0x4005b6
.40% 0x4005ef (predicted:92.9%)
66 Puzzle Puzzle [.] 0x00000000000005bb
.17% 0x4005b6
.31% 0x4005ef (predicted:92.3%)

DYNAMIC PROFILING

Instrumentation based approaches:

— Instrument every branch in the program with a
counter

— Increment counter whenever branch executes

— Much higher CPU and memory overhead

— Intrusive

MOTIVATION

18

But why static branch
prediction?

MOTIVATION

19

But why static branch
prediction?

MOTIVATION

sometimes is really

Collecting profile data
difficult ...

20

h

Impossible?

MOTIVATION

sometimes is really
difficult ...

Collecting profile data

21

Impossible?

MOTIVATION

Collecting profile data \

Yes, think about mobile
apps.

22

STATLC PROFILING

- Look only at the code

STATLC PROFILING

- Look only at the code (no execution!)

- Look only at the code (no execution!) §

STATLC PROFILING

STATLC PROFILING

- Look only at the code (no execution!)

- Try to infer branch likelihood

»

Oh yedh.“

26

STATLC BRANCH PREDICTION TN THE WILD

Heuristic-based

Machine Learning-based

Suggestion of paper to read:
Wenlei He, Julian Mestre, Sergey Pupyrev, Lei Wang, and Hongtao Yu. 2022. Profile inference revisited. Proc. ACM Program.
Lang. 6, POPL, Article 52 (January 2022), 24 pages. https://doi.org/10.1145/3498714

27

https://dl.acm.org/doi/10.1145/3498714

HEURTSTIC-BASED STATIC PROFTLING

28

HEURTSTIC-BASED STATIC PROFTLING

29

HEURTSTIC-BASED STATIC PROFTLING

30

LLVMS STATTC BRANCH PREDICTTON

Based solely on heuristics
— Paper from Ball & Larus?

Implemented in the BranchProbabilitylnfo analysis pass

[1] Ball, Thomas, and James R. Larus. "Branch prediction for free." ACM SIGPLAN Notices 28.6 (1993): 300-313.

https://llvm.org/doxygen/BranchProbabilityInfo_8cpp_source.html
https://dl.acm.org/doi/10.1145/173262.155119

HEURTSTIC-BASED STATIC PROFILING

- Very ad-hoc solution

- Relies on compiler developers themselves coming up

with clever heuristics

Machine Learning-Based Static Profiling

. Collect corpus of programs, and static features that

describe them

Record their branch execution behaviour

- Train ML model based on features + branch data

. Create static profiles for unknown programs based on

trained knowledge!

Some work in this area

To read click here

Evidence-based Static Branch Prediction using Machine Learning

Brad Calder; Dirk Grunwald, Michael Jones, Donald Lindsay,
James Martin, Michael Mozer, and Benjamin Zorn
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430 USA

September 19, 1996

Abstract

Correctly predicting the direction that branches will take is increasingly important in today’s wide-
issue computer archil . The name program-based branch prediction is given to static branch
prediction techniques that base their prediction on a program'’s structure. In this paper, we investigate a
new approach to program-based branch prediction that uses a body of existing programs to predict the
branch behavior in a new program. We call this approach to program-based branch prediction evidence-
based static prediction, or ESP. The main idea of ESP is that the behavior of a corpus of programs can be
used to infer the behavior of new programs. In this paper, we use neural networks and decision trees to
map static features associated with each branch to a prediction that the branch will be taken. ESP shows

ignil over other icti i peci it is a prog ed i
it is effective across a range of and ing styles, and it does not rely on
the use of expert-defined heuristics.

In this paper, we describe the application of ESP to the problem of static branch prediction and
compare our results to existing program-based branch predi We also i i the icabili
of ESP across computer archi ing | i and run-time systems. We
provide results showing how sensitive ESP is to the number and type of static features and programs
included in the ESP training sets, and compare the efficacy of static branch prediction for subroutine
libraries. Averaging over a body of 43 C and Fortran programs, ESP branch prediction results in a
miss rate of 20%, as compared with the 25% miss rate obtained using the best existing program-based
heuristics.

To read click here

Profile Guided Optimization without Profiles:
A Machine Learning Approach

Nadav Rotem
Meta, Inc.

Chris Cummins
Meta Al

January 5, 2022

Abstract

Profile guided is an effective technique for
i ing the ability of ilers based on
dynamic behavior, but collecting profile data is expen-
sive, cumbersome, and requires regular updating to re-
‘main fresh.

‘We present a novel statistical approach to inferring
branch probabilities that improves the performance of
programs that are compiled without profile guided opti-
mizations. We perform offline training using information
that is collected from a laree corpus of binaries that have

VESPA: Static Profiling for Binary Optimization

To read click here

ANGELICA APARECIDA MOREIRA, UFMG, Brazil
GUILHERME OTTONI, Facebook, Inc., USA
FERNANDO MAGNO QUINTAO PEREIRA, UEMG, Brazil

Over the past few years, there has been a surge in the popularity of binary optimizers such as BOLT, Propeller,
Janus and HALO. These tools use dynamic profiling information to make optimization decisions. Although
effective, gathering runtime data presents developers with inconveniences such as unrepresentative inputs,
the need to accommodate software modifications, and longer build times. In this paper, we revisit the static
profiling technique proposed by Calder et al. in the late 90’s, and investigate its application to drive binary
optimizations, in the context of the BOLT binary optimizer, as a replacement for dynamic profiling. A few core
modifications to Calder et al.’s original proposal, consisting of new program features and a new regression
model, are sufficient to enable some of the gains obtained through runtime profiling. An evaluation of BOLT
powered by our static profiler on four large benchmarks (clang, GCC, MySQL and PostgreSQL) yields binaries
that are 5.47% faster than the executables produced by clang -O3.

bool BranchProbabilityInfo
calcPointerHeuristi
const BranchInst »BI

t BasicBlock =BB) (
St<BranchInst>(..);

Value »Cond = BI->getCondition();
n_cast<ICmpInst>(Cond) ;
isEquality ()

ICmpInst »CT
if (1CI I !
return false;

bool prob = CI->getPredicate() == ICmpInst::ICHP_NE;

34

https://arxiv.org/abs/2112.14679#:~:text=Profile%20Guided%20Optimization%20without%20Profiles%3A%20A%20Machine%20Learning%20Approach,-Nadav%20Rotem%2C%20Chris&text=Profile%20guided%20optimization%20is%20an,regular%20updating%20to%20remain%20fresh.
https://dl.acm.org/doi/abs/10.1145/3485521
https://dl.acm.org/doi/10.1145/239912.239923

THE GOAL OF THIS WORK

. Optimize binaries using static profile inferred by a
machine learning model

« Vintage ESP Amended (VESPA)
-~ Extension of Calder's work: Evidence-Based Static
Branch Prediction (ESP)

[1] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. 1997.
Evidence-based static branch prediction using machine learning. ACM Trans. Program. Lang. Syst. 19, 1 (Jan. 1997), 188-222.
DOl:https://doi.org/10.1145/239912.239923

https://dl.acm.org/doi/10.1145/239912.239923

CALDER VS VESPA

. Collect corpus of programs, and static features that

describe them

- Record their branch execution behaviour

- Train ML model based on features + branch data

. Create static profiles for unknown programs based on

trained knowledge!

INFRASTRUCTURE OVERVIEW - STATIC BOLT USAGE!

ERE=e
| E| =

37

ML PTPELTNE OVERVIEW

Data Preparation

38

ML PTPELINE OVERVIEW

[EATURE MINER

« Implemented the FeatureMiner pass in BOLT

 Runs after binary disassembling/CFG construction

« Analyzes the CFG to collect static features proposed by

Calder et al.l¥! as well as others devised by us for each

branch.

[1] Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin, Michael Mozer, and Benjamin Zorn. 1997.

Evidence-based static branch prediction using machine learning. ACM Trans. Program. Lang. Syst. 19, 1 (Jan. 1997), 188-222.

DOl:https://doi.org/10.1145/239912.239923

40

https://dl.acm.org/doi/10.1145/239912.239923

branch in the program

Features

Categorical

Numerical

ML PTPELINE OVERVIEW

L Which features? 1

41

AN EXAMPLE

isLoopHeader

entry:
br label %for.cond

for.cond:

%sum.0 = phi i32 [0, %entry], [%add, %for.inc]
%i.0 = phii32 [0, %entry], [%inc, %for.inc]
Yecmp = icmp slt 132 %i.0, 100

bril %cmp, label %for.body, label %for.end
T F

for.body:

for.end:

. . %cmpl = icmp sgt 132 %sum.0, 101
%add = add nsw 132 %sum.0, %i.0
br label %for.inc

bril %cmpl, label %if then, label %if.end

X]

A
for.inc: if then:
%inc = add nsw 132 %i .0, 1 %dec = add nsw 132 %sum.0, -1
br label %for.cond br label %if.end
if.end:

%sum.] = phi 32 [%dec, %if then], [%sum.0, %for.end]
ret 132 %sum.1

42

AN EXAMPLE

isLoopHeader

v

for.cond:

%sum.0 = phi i32 [0, %entry], [%add, %for.inc]
%1.0 = phi 32 [0, %entry], [%inc, %for.inc]

010, 100
br il %cmp, label %for.body, label %for.end
P | F
A

\

N

This conditional branch is the
header of this loop. Thus,
isLoopHeader = True

N

N

This conditional branch is not
the header of any loop. Thus,
isLoopHeader = False

N

AN EXAMPLE

isLoopHeader

| 4

for.end:

Pep 1 = iIcmp sgt 132 %
bril %cmpl, label %if then, label %i

SUTO; T T —

T

F

l

D

N

MMPLE

entry:

br label %for.cond

/

for.cond:

%i.0 = phi i3
%c -
bri

for.body:
%add = add nsw 132
br label %for.inc

%sum.0 = phi i32 [0, %entry |, [%add, %for.inc]
210, %entry], [%inc, %for.inc]

/

for.inc:
%inc = add nsw 132 %i.0, 1
br label %for.cond

if then:
9%dec = add nsw 132 %sum.0, -1
br label %if.end

if end:

%sum.l = phi i32 [%dec, %if then], [%sum.0, %for.end]
ret 132 %sum.1

45

ML Pipeline Overview

/ Train predictive
models / Perform
predictions using the
model

What do these
predictions look like?

PREDICTION QUTPUT

PREDICTION QUTPUT

PREDICTION QUTPUT

GETTING FREQUENCIES OUT OF PROBABILITLES

. Technique proposed by Wu & Larus?’

Calculate basic block and Control Flow Graph (CFG) edge frequencies

intra-procedurally (within functions)

Propagate probabilities starting from the entry block, according to these equations:

bfreqg(b;)) =1 (if entry block)

bfreq(b)= Y. freq(bp — b)) (otherwise)
bpepred(b;)

freq(b; — bj) = bfreq(b;)prob(b; — bj)

[1] Wu, Youfeng, and James R. Larus. "Static branch frequency and program profile analysis." Proceedings of the
27th annual international symposium on Microarchitecture. 1994.

50

https://dl.acm.org/doi/10.1145/192724.192725

GETTING FREQUENCIES OUT OF PROBABILITLES

. Technique proposed by Wu & Larus?’

Calculate basic block and Control Flow Graph (CFG) edge frequencies

intra-procedurally (within functions)

Propagate probabilities starting from the entry

bfreq(b;) 5
gl This technique

estimates execution
frequency (not

freq(b; — bj) = bfreq(b, absolute counts) with

static program

analysis!!!! 7

[1] Wu, Youfeng, and James R. Larus. "Static branch frequency and program profile analysis." Proceedings of the
27th annual international symposium on Microarchitecture. 1994.

bfreq(bi) =
bpepred(b;)

-

ations:

51

CAVEATS TO STATICINFERENCE

« Indirect branches cannot have their targets inferred

statically
— Adds imprecision to intra-procedural inference!

. Similarly, indirect procedure calls (virtual method
invocations, function pointer calls, etc.) also cannot be
resolved statically
— Adds imprecision to inter-procedural inference!

LXPERIMENTS

YPOTHESIS

"BOLT using static profile data can still provide some of
the gains as using real profile data."

54

SETUP

Trained models on a dataset with 243 programs:

o Corpus of 2,093,873 two-way conditional
branched but only 513,316 associated with branch
predictions

All binaries used in training and as baseline were

compiled using Clang 12 with -O3

80% of the branches used for training and 20% for

test and validation

VESPA in Practice

RQ2: What are the performance gains of our approach
when compared to the baseline compiler at its highest
optimization level, and to a binary optimized with
dynamic profiling information?

0.00%

LAPERIMENTS

Speedup

N

Our baseline is the
original binary,
optimized with -O3

\

BOLT+Full Perf

0.00%

LAPERIMENTS

Speedup

N

BOLT+Full Perf indicates a N
binary optimized using BOLT’s
traditional usage: with a
dynamic execution profile
collected with perf

LAPERIMENTS

BOLT+Full Perf

@Limited Perf
BOLT+Limited Perf indicates a \

binary optimized using BOLT’s
traditional usage: with a stripped
dynamic execution profile
\ collected with perf.

0.00%

Speedup

BOLT+Full Perf
BOLT+Limited Perf

”’————éOLT+CaMer
\

LAPERIMENTS

—
/

0.00%

Speedup

N

\

BOLT+Calder indicates a binary
built using BOLT with a static
profile inferred using the
heuristics due to Calder.

BOLT+Full Perf
BOLT+Limited Perf

BOLT+Calder

~— BOLT+Wu Larus

0.00%

LAPERIMENTS

Speedup

N

BOLT+Wu Larus indicates a
binary built using BOLT with a
static profile inferred using the

heuristics due to Wu et al.

\

BOLT+Full Perf
BOLT+Limited Perf

BOLT+Calder
BOLT+Wu Larus

—

___¥BOLT+Unbmsed

0.00%

LAPERIMENTS

Speedup

N

BOLT+Unbiased indicates a
binary built using BOLT and

has a 50/50 probability split.

\

assuming every two-way branch

BOLT+Full Perf
BOLT+Limited Perf

BOLT+Calder
BOLT+Wu Larus
BOLT+Unbiased

—_ BOLT+No Profile

0.00%

LAPERIMENTS

Speedup

N

BOLT+No Profile is a binary
built with BOLT fed with no
profile information at all.

\

LAPERIMENTS

BOLT+Full Perf
BOLT+Limited Perf

These two indicate binaries built\

with trivial profiles that assume
BOLT+Calder every two-way branch takes
BOLT+Wu Larus either direction with 100%
. \ probability.
BOLT+Unbiased

BOLT+No Profile

BOLT+Never
BOLT+Always

0.00%

Speedup

LAPERIMENTS

BOLT+Full Perf

BOLT+Limited Perf \

__BOLT+VESPA And finally, BOLT+VESPA is a
BOLT+Calder binary built using BOLT with our

technique for static profile
BOLT+Wu Larus inference.

BOLT-+Unbiased N\
BOLT+No Profile
BOLT+Never
BOLT+Always
0:00%

Speedup

LXPERIMENTS

Bootstrapping Clang 7

BOLT+Full Perf
BOLT+Limited Perf
BOLT+VESPA
BOLT+Calder
BOLT+Wu Larus
BOLT+Unbiased
BOLT+No Profile
BOLT+Never

BOLT+Always

-10.00% 0.00%

Speedup

LXPERIMENTS

MYSQL + Sysbench OLTP_POINT_SELECT

BOLT+Full Perf
BOLT+Limited Perf
BOLT+VESPA
BOLT+Calder
BOLT+Wu Larus
BOLT+Unbiased
BOLT+No Profile
BOLT+Never

BOLT+Always
-20.00% 0.00% 20.00% 40.00%

Throughput Improvement

Il CLANG [GCC W MysQL @ PostgreSQL [l GEOMEAN

37.65%

20.19%

BOLT+Dynamic Profile
31.97%
34.46%

49.72%

23.75%
i 5 8.00% |
BOLT+Limited Dynamic Profile 28.81%

2.28%
BOLT+VESPA

_— 2 S
5.47%

BOLT+Calder

BOLT+Heuristics 2 4.42%

BOLT+Unbiased

BOLT+No Profile

-5.63%
-4.91%
BOLT+Never -6.87%
-2.30%
-4.94%
27%
-8.78%
BOLT+Always -10.22%
-6.36%
-8.17%
-20.00% 0.00% 20.00%

Performance Improvement

DepARTMENT OF COMPUTER SCIENCE
ompilers UniversiDADE FEDERAL DE MINAS GERAIS
aboratory FeberAL UNIVERSITY oF MINAs GERAIS, BraziL

ﬁ angelica.moreira@dcc.ufmg.br

Thanks to my sponsors:

FACEBOOK
O\ Meta

Microsoft

