
Introduction to E-Graphs
Rebecca Swords | Women in Compilers and Tools

Questions

What are e-graphs?

What are they good for?

How do they work?

E-Graph A data structure representing an
equivalence relation over terms

Practical
Applications

Theorem proving
SMT solving
Optimization
Translation validation
Compilation
Synthesis

Running Example: (a*2)/2

/

*

a 2 2

 This reduces to a
 We can use e-graphs to do it!

Start with this AST

Into an E-Graph

e2
*

e0
a

e1
2

e3
/

/

*

a 2 2

Into an E-Graph

e-class
e-

node
e-

node
e-

node

e2
*

e0
a

e1
2

e3
/

Build it with Quiche

expr = (ExprNode('a', ()) * 2) /
2

quiche_tree = ExprTree(expr)

egraph = EGraph(quiche_tree)

1

2

3

1. Parse term into the arithmetic language
structure

2. Construct intermediate QuicheTree
representation

3. Create e-graph from QuicheTree

Another Term: a << 1

shift_expr = ExprNode('a', ()) <<
1

egraph.add(ExprTree(shift_expr))

e3
/

e2
*

e0
a

e1
2

e5
<<

e4
1

Merging Equivalent Terms

We assert:
a*2 === a<<1

It follows that:
(a*2)/2 === (a<<1) / 2

e3
/

e2
*

e0
a

e1
2

<<

e4
1

Manual Merging in Quiche

1. Save e-class IDs for the
expressions to be merged

2. Merge the two e-classes together

3. Restore e-graph invariants

shift_eclass =
egraph.add(ExprTree(shift_expr))

times_node = ExprNode('a', ()) * 2

times_eclass =
egraph.add(ExprTree(times_node))

egraph.merge(times_eclass, shift_eclass)

egraph.rebuild()

1

2

3

E-Graphs More Formally

Structure
 E-node: an n-ary function symbol and n

children (e-class IDs)
 E-class: set of e-nodes
 Union-find over e-classes: add, merge, find

operations
 Canonical e-node: for each child, i, find(i)

= i
 Hashcons: maps canonical e-nodes to e-classes

Invariants
 Hashcons maps all canonical e-nodes
 Equivalence closed under congruence, i.e.,

congruent e-nodes are in the same e-class
If a = b, then f(a) = f(b)

Why is this good for term rewriting?
Instead of destructive rewrites, put all equivalent terms in the e-graph

 No worries about phase ordering
 Consider all options and choose the “best” at the end

E-Matching 
 
 
Pattern matching
for e-graphs!

 Add pattern variables to language

 ematch searches for a pattern and
returns:

 e-class matching the term
 substitution from vars to e-class IDs

E-Matching Example: x * 2

pattern = ExprTree(ExprNode('x', ()) *
2)

matches = egraph.ematch(pattern,

 egraph.eclasses())

print(matches)

[(e2, { 'x': e0 })]

e3
/

e2
*

e0
a

e1
2

<<

e4
1

match

x

Rewriting Rules: Pattern Merges

1. Create a rule:
x * 2 === x << 1

2. Apply all rules to e-graph (and
rebuild)

3. Shift e-class: e5
Shift e-class find: e2

rule = ExprTree.make_rule(lambda x:
 (x * 2, x << 1))

Rule.apply_rules([rule], egraph)

print("Shift e-class: ", shift_eclass)
print("Shift e-class.find(): ",
shift_eclass.find())

1

2

3

Another rewrite: 
 

(x*y)/z  
===  

x*(y/z)

match
e3

/

e2
*

e0
a 2

<<

1

*

e1 e4
/

e6x

y z

And another: 
 

x/x  
===  
1

match

e3
/

e2
*

e0
a 2

<<

1

*

e1 e4
/

x

And one more: 
 

x*1  
===  
x

match

/

e2
*

a 2

<<

1

*

e1 e4
/

x

e0

Equality 
Saturation

Keep applying rewrite
rules until no new
changes are made

Equality Saturation Loop

e-graph

find
patterns

apply
matches

restore
invariants

Apply Rules Until Saturation

rules = [
 ExprTree.make_rule(lambda x, y, z:
 ((x * y) / z, x * (y / z))),
 ExprTree.make_rule(lambda x:
 (x / x, ExprNode(1, ()))),
 ExprTree.make_rule(lambda x: (x * 1, x))
]
while not egraph.is_saturated():
 Rule.apply_rules(rules, egraph)
aeclass = egraph.add(ExprTree(ExprNode('a',
())))
assert aeclass.find() == egraph.root.find()

1

2

3

1. Same 3 rules we just applied

2. Apply rules until the e-graph is
saturated

3. Verification: expect a to have
merged with the “root” e-class

E-Class 
Analysis 
 
 
Domain-specific e-
graph extensions

 Attach datum to each e-class
based on e-nodes: make

 Merge data when e-classes merge:
join

 Update e-class based on datum:
modify

 Form a join-semilattice

What Can E-Class Analyses Do?
 Program analysis
 Conditional or dynamic rewrites
 Debugging
 Pruning
 On-the-fly term extraction

Standardized interface for extending e-graphs!

Analysis Invariant

fixed point

data is the same as `make`-ing
data for each e-node and then

`join`-ing

for each e-class

Constant Folding 
E-Class Analysis 

 
Suppose we learn that a

=== 4

e3
/

e2
*

e0
4

e1
2a

24

8

4

Constant Folding 
E-Class Analysis 

 
Suppose we learn that a

=== 4

/

e2
*

4

e1
2a

2

8
8

e0

4

Constant Folding: Usage

expr = (ExprNode('a', ()) * 2) / 2

quiche_tree = ExprTree(expr)

egraph = EGraph(quiche_tree, ExprConstantFolding())

four_eclass = egraph.add(ExprTree(ExprNode(4, ())))

a_eclass = egraph.add(ExprTree(ExprNode("a", ())))

egraph.merge(a_eclass, four_eclass)

egraph.rebuild()

assert egraph.root.data == 4

1

2

3

1. Create e-graph with
constant folding
analysis

2. Get e-class IDs

3. Merge 4 with a

4. Rebuild (update
analysis)

5. Verify

4

5

Term Extraction

Pick an e-class to extract
Cost model assigns a cost to e-

nodes
Choose best e-node for each e-

class
Construct a term by combining the

e-node values

Term Extraction Example

Operator Cost

+ 1

<< 1

* 2

/ 3

default 0

<<

a 1

e3
/

e2
*

e0
a

e1
2

<<

e4
1

2 1

0 0 0

Term Extraction Example

cost_model = ExprNodeCost()

extractor= MinimumCostExtractor()

extracted = extractor.extract(

 cost_model,

 egraph,

 egraph.root.find(),

 ExprTree.make_node)

assert str(extracted) == "a"

1. Initialize cost model and extractor

2. Extract the best term

3. Specify which e-class to extract

4. Function to construct ExprTree
from e-node data

1

2

3

4

More on Quiche
 Add your own languages!

 Bring your own parser, adapt your AST into a QuicheTree
 End-to-end Python rewriting!

 Uses native Python parser (v3.7+)
 Read/write valid Python files

 Native Python!
 With all its pros and cons

QuicheTree

Quiche requires the user to provide a
parsed tree that implements
QuicheTree (“bring your own
parser”).

value()  
the e-node key

children()
list of the node's children

is_pattern_symbol()
for e-matching; indicates if the node is a pattern

class QuicheTree(ABC):
 @abstractmethod
 def value(self)
 
 @abstractmethod
 def children(self)
 
 @abstractmethod
 def is_pattern_symbol(self)

Links and References
 Quiche repo: https://github.com/riswords/quiche
 egg website: https://egraphs-good.github.io/
 egg: Fast and extensible equality saturation (POPL ‘21, Willsey, et al.): https://dl.acm.org/doi/

10.1145/3434304
 Equality-Based Translation Validator for LLVM (CAV ‘11, Stepp, Tate, & Lerner): https://

cseweb.ucsd.edu/~rtate/publications/eqsat/eqsat_stepp_cav11.pdf
 babble: Learning Better Abstractions with E-Graphs and Anti-Unification (POPL ‘23, Cao, et

al.): https://dl.acm.org/doi/10.1145/3571207

https://github.com/riswords/quiche
https://egraphs-good.github.io/
https://dl.acm.org/doi/10.1145/3434304
https://dl.acm.org/doi/10.1145/3434304
https://cseweb.ucsd.edu/~rtate/publications/eqsat/eqsat_stepp_cav11.pdf
https://cseweb.ucsd.edu/~rtate/publications/eqsat/eqsat_stepp_cav11.pdf
https://dl.acm.org/doi/10.1145/3571207

Questions?

Additional References from Q&A
1. Link to the public E-Graphs Zulip chat: https://egraphs.zulipchat.com/
2. Perfect Reconstructability of Control Flow from Demand Dependence Graphs (Bahmann, et al.

2014) https://dl.acm.org/doi/abs/10.1145/2693261
3. E-Graphs Zulip discussion of using RVSDG representation: https://egraphs.zulipchat.com/

#narrow/stream/328976-Program-Optimization/topic/PEGs
4. Equality Saturation for Tensor Graph Superoptimization (Yang, et al., MLSys 2014): https://

arxiv.org/abs/2101.01332
5. Relational e-matching (Zhang, et al., POPL 2022)
6. Logging an Egg: Datalog on E-Graphs (EGRAPHS 2022) - PLDI 2022 (sigplan.org)

https://egraphs.zulipchat.com/
https://dl.acm.org/doi/abs/10.1145/2693261
https://egraphs.zulipchat.com/#narrow/stream/328976-Program-Optimization/topic/PEGs
https://egraphs.zulipchat.com/#narrow/stream/328976-Program-Optimization/topic/PEGs
https://arxiv.org/abs/2101.01332
https://arxiv.org/abs/2101.01332
https://pldi22.sigplan.org/details/egraphs-2022-papers/12/Logging-an-Egg-Datalog-on-E-Graphs
https://pldi22.sigplan.org/details/egraphs-2022-papers/12/Logging-an-Egg-Datalog-on-E-Graphs
https://pldi22.sigplan.org/details/egraphs-2022-papers/12/Logging-an-Egg-Datalog-on-E-Graphs

